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Abstract
We present a deterministic secure direct communication scheme via
entanglement swapping, where a set of ordered maximally entangled three-
particle states (GHZ states), initially shared by three spatially separated parties,
Alice, Bob and Charlie, functions as a quantum information channel. After
ensuring the safety of the quantum channel, Alice and Bob apply a series of local
operations on their respective particles according to the tripartite stipulation and
the secret message they both want to send to Charlie. By three of Alice, Bob
and Charlie’s Bell measurement results, Charlie is able to infer the secret
messages directly. The secret messages are faithfully transmitted from Alice
and Bob to Charlie via initially shared pairs of GHZ states without revealing
any information to a potential eavesdropper. Since there is no transmission of
the qubits carrying the secret message between any two of them in the public
channel, it is completely secure for direct secret communication if a perfect
quantum channel is used.

PACS numbers: 03.67.Dd, 03.67.Hk

1. Introduction

Cryptography is the art of enabling two parties to communicate in private. Effective
cryptosystems make it easy for parties who wish to communicate to achieve privacy, but
make it very difficult for third parties to ‘eavesdrop’ on the content of the conversation. A
simple, yet highly effective private key cryptosystem is the Vernam cipher, sometimes called a
one time pad. The great feature of this system is that as long as the key strings are truly secret,
it is provably secure. The major difficulty of private key cryptosystems is secure distribution
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of key bits, since a malevolent third party may be eavesdropping on the key distribution, and
then use the intercepted key to decrypt some of the messages in transmission.

One of the earliest discoveries in quantum computation and quantum information was
that quantum mechanics can be used to do key distribution in such a way that Alice and
Bob’s security cannot be compromised. This procedure is known as quantum cryptography
or quantum key distribution (QKD). The basic idea is to exploit the quantum mechanical
principle that observation in general disturbs the system being observed. In 1984, Bennett
and Brassard proposed the first quantum cryptography protocol [1] using quantum mechanics
to distribute keys between Alice and Bob, without any possibility of compromise. Since then
numerous QKD protocols have been proposed, such as Ekert’s 1991 protocol (Ekert91) [2],
the Bennett–Brassard–Mermin 1992 protocol (BBM92) [3], the B92 protocol [4] and other
protocols [5–22].

Recently, Shimizu and Imoto [23, 24] and Beige et al [25] presented novel quantum secure
direct communication (QSDC) schemes, in which the two parties communicate important
messages directly without first establishing a shared secret key to encrypt them and the
message is deterministically sent through the quantum channel, but can be read only after
the transmission of an additional piece of classical information for each qubit. Boström and
Felbinger [26] put forward a communication scheme, the ‘ping-pong protocol’, which also
allows for deterministic communication. This protocol can be used for the transmission of
either a secret key or a plain text message. Wójcik discussed the security of the ‘ping-pong
protocol’ in a noisy quantum channel [27]. Deng et al [28] suggested a two-step quantum
direct communication protocol using an Einstein–Podolsky–Rosen pair block. However, in all
these QSDC schemes it is necessary to send the qubits with secret messages (message-coding
sequence) in the public channel. Therefore, Eve can attack the qubits in transmission and
make the communication interrupt.

More recently, Yan and Zhang [29] presented a QSDC scheme using Einstein-Podolsky-
Rosen pairs and teleportation [30]. By means of controlled quantum teleportation [31],
we proposed two controlled QSDC protocols [32, 33]. Since in these protocols there
are no particles carrying secret messages to be transmitted in the public channel, so the
communication cannot be interrupted by any eavesdropper. Therefore, they are completely
secure for direct secret communication as long as a perfect quantum channel is used.

Entanglement swapping [34] is a method that enables one to entangle two quantum systems
that do not have direct interaction with one another. Based on entanglement swapping, we
presented a QSDC scheme [35]. In this paper, we introduce another QSDC scheme achieved
by swapping quantum entanglement, in which a set of ordered three-particle Greenberger–
Horne–Zeilinger (GHZ) states initially shared by three spatially separated parties, Alice, Bob
and Charlie, functions as a quantum information channel. The proposed QSDC scheme is
simultaneous mutual communications among different pairs of parties, one for Alice and
Charlie and another for Bob and Charlie. After ensuring the safety of the quantum channel,
Alice and Bob encode secret classical bits by applying predetermined unitary operations on
GHZ triplets. The secret messages encoded by local operations are faithfully transmitted
from two distant senders (Alice and Bob) to a remote receiver (Charlie) without revealing any
information to a potential eavesdropper.

2. A simultaneous mutual quantum secure direct communication protocol
between the central party and other two parties

In this section we propose a simultaneous mutual quantum secure direct communication
scheme which utilizes shared GHZ states and entanglement swapping between communicating
parties, in the form of three people (Alice, Bob and Charlie).
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2.1. Notation

Let us start by illustrating entanglement swapping. We first define four Bell states (EPR pairs)
as

�± ≡ 1√
2
(|00〉 ± |11〉), �± ≡ 1√

2
(|01〉 ± |10〉), (1)

and eight GHZ states as

|P ±〉 ≡ 1√
2
(|000〉 ± |111〉), |Q±〉 ≡ 1√

2
(|001〉 ± |110〉),

|R±〉 ≡ 1√
2
(|010〉 ± |101〉), |S±〉 ≡ 1√

2
(|011〉 ± |100〉). (2)

Suppose three parties, Alice, Bob and Charlie, share two GHZ triplets |P +〉123 and |P +〉456

where Alice has qubits 1 and 4, Bob possesses 2 and 5 and particles 3 and 6 are in Charlie’s
side. Two operations are performed on qubits 1 and 4, and 2 and 5 with the Bell basis, �± and
�±, by Alice and Bob, respectively; then the total state |P +〉123 ⊗ |P +〉456 is projected onto
�+

14 ⊗ �+
25 ⊗ �+

36, �+
14 ⊗ �−

25 ⊗ �−
36, �−

14 ⊗ �+
25 ⊗ �−

36, �−
14 ⊗ �−

25 ⊗ �+
36, �+

14 ⊗ �+
25 ⊗ �+

36,
�+

14 ⊗�−
25 ⊗�−

36, �−
14 ⊗�+

25 ⊗�−
36 and �−

14 ⊗�−
25 ⊗�+

36 with equal probability of 1/8 for each.
Previous entanglement of qubits 1, 2 and 3, and 4, 5 and 6 is now swapped into entanglement
between 1 and 4, 2 and 5 and 3 and 6. Although we considered entanglement swapping with
the initial state |P +〉123 ⊗ |P +〉456, similar results can be achieved with other GHZ states. For
example, when Alice, Bob and Charlie originally share |S+〉123 and |P +〉456, there are eight
possible measurement outcomes, �+

14 ⊗ �+
25 ⊗ �+

36, �+
14 ⊗ �−

25 ⊗ �−
36, �−

14 ⊗ �+
25 ⊗ �−

36,
�−

14 ⊗�−
25 ⊗�+

36, �+
14 ⊗�+

25 ⊗�+
36, �+

14 ⊗�−
25 ⊗�−

36, �−
14 ⊗�+

25 ⊗�−
36 and �−

14 ⊗�−
25 ⊗�+

36
with equal probability 1/8.

2.2. Preparing a quantum channel

Suppose that three spatially separated parties wish to realize simultaneous mutual
communications in secret among different pairs of parties, one for Alice and Charlie and
another for Bob and Charlie. In order to achieve tripartite communications between one party
and the other two parties in private at the same time, the first step is to establish a quantum
channel (GHZ triplets). Obtaining these GHZ triplets could have come about in many different
ways, such as Charlie prepares a sequence of GHZ triplets and then shares each triplet with
Alice and Bob; or they could have met a long time ago and shared them, storing them until the
present. Alice, Bob and Charlie then choose randomly a subset of GHZ triplets, and do some
appropriate tests of fidelity. Passing the test certifies that they continue to hold sufficiently
pure, entangled quantum states. However, if tampering has occurred, they throw out the GHZ
triplets and reconstruct them. We will discuss the details in section 3.

2.3. The direct communication scheme by shared GHZ states and entanglement swapping

After ensuring the security of the quantum channel (GHZ states), Alice, Bob and Charlie begin
secure direct communication. The QSDC scheme works as follows.

(1) Alice, Bob and Charlie randomly divide all pure GHZ triplets into N ordered groups
{ξ(1)123, η(1)456}, {ξ(2)123, η(2)456}, . . . , {ξ(N)123, η(N)456}, where ξ(i)123 and η(i)456

denote two GHZ states of Alice’s particles 1 and 4, Bob’s particles 2 and 5 and Charlie’s
3 and 6 in the ith group. For simplicity, let us suppose that these GHZ triplets are in the
state |P +〉.



5764 T Gao et al

(2) Alice, Bob and Charlie agree that Alice encodes information by local operations

σ00 = I = |0〉〈0| + |1〉〈1|, σ01 = σx = |0〉〈1| + |1〉〈0|,
σ10 = iσy = |0〉〈1| − |1〉〈0|, σ11 = σz = |0〉〈0| − |1〉〈1| (3)

on GHZ triplets ξ(i)123, and Bob by local operations

σ0 = I = |0〉〈0| + |1〉〈1|, σ1 = σx = |0〉〈1| + |1〉〈0|. (4)

Alice and Charlie, and Bob and Charlie assign secretly two bits and one bit to Alice and
Bob’s respective operations as following encoding

σ00 → 00, σ01 → 01, σ10 → 10, σ11 → 11, (5)

and

σ0 → 0, σ1 → 1. (6)

(3) Alice and Bob encode their respective messages (secret classical bits) on GHZ groups.
Explicitly, both Alice and Bob apply a predetermined unitary operation on each of their
particles 1 and 2 according to their respective secret message sequence.

Suppose Alice, Bob and Charlie initially share GHZ state |P +〉123, |P +〉456; then their
original total state is

|P +〉123 ⊗ |P +〉456 = 1
2
√

2

[
�+

14 ⊗ �+
25 ⊗ �+

36 + �+
14 ⊗ �−

25 ⊗ �−
36 + �−

14 ⊗ �+
25 ⊗ �−

36

+ �−
14 ⊗ �−

25 ⊗ �+
36 + �+

14 ⊗ �+
25 ⊗ �+

36 + �+
14 ⊗ �−

25 ⊗ �−
36

+ �−
14 ⊗ �+

25 ⊗ �−
36 + �−

14 ⊗ �−
25 ⊗ �+

36

]
. (7)

If Alice wishes to transmit 11 to Charlie and Bob wants to send 1 to Charlie, then Alice
performs a local operation σ11 on particle 1 and Bob applies σ1 on his particle 2; thus the
state |P +〉123 is turned into |R−〉123.

(4) Alice and Bob make a Bell measurement on particles 1 and 4, and 2 and 5, respectively.
We can see the effects of measurements by Alice and Bob on Charlie’s particles 3 and 6
if we express the product of GHZ states |R−〉123 and |P +〉456 in the following equation:

|R−〉123 ⊗ |P +〉456 = 1
2
√

2

[
�−

14 ⊗ �+
25 ⊗ �+

36 − �−
14 ⊗ �−

25 ⊗ �−
36 + �+

14 ⊗ �+
25 ⊗ �−

36

−�+
14 ⊗ �−

25 ⊗ �+
36 + �−

14 ⊗ �+
25 ⊗ �+

36 − �−
14 ⊗ �−

25 ⊗ �−
36

+ �+
14 ⊗ �+

25 ⊗ �−
36 − �+

14 ⊗ �−
25 ⊗ �+

36

]
. (8)

If Alice and Bob get measurement outcomes �+
14 and �−

25, respectively, then Charlie’s
two particles 3 and 6 will have the state �+

36.
(5) Alice and Bob inform Charlie that they have made a Bell measurement on particles 1 and

4, and 2 and 5 over a classical channel, respectively, but do not tell the results of their
measurements.

(6) Charlie performs a Bell measurement on his particles 3 and 6 and deduces the outcomes
of Alice and Bob’s measurements.

From the calculation of entanglement swapping (equation (7)) and his measurement
outcome �+

36, Charlie could calculate that the initially whole state |P +〉123 ⊗ |P +〉456

should collapse to �+
14 ⊗ �+

25 ⊗ �+
36 or �−

14 ⊗ �−
25 ⊗ �+

36 without Alice and Bob’s local
operations.

(7) Charlie asks and gets Alice and Bob’s measurement results publicly.
(8) Charlie can read out Alice and Bob’s secret message by comparing his calculation result

with Alice and Bob’s practical measurement outcomes.
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From the measurement results announced by Alice and Bob, and his calculation result,
Charlie can infer that Alice and Bob have applied local operations σ11 and σ1 on particles
1 and 2, respectively, such that �−

14 ⊗ �−
25 ⊗ �+

36 turns into �+
14 ⊗ �−

25 ⊗ �+
36; since it is

impossible for Alice and Bob to change �+
14 ⊗ �+

25 ⊗ �+
36 into �+

14 ⊗ �−
25 ⊗ �+

36 by applying
unitary operation σk1k1′ ⊗ σk2 (k1, k1′ , k2 ∈ {0, 1}) on particles 1 and 2, thus he obtains Alice’s
message 11 and Bob’s 1. Finally, three spatially separated parties have realized deterministic
secure direct communication between one party and the other two parties.

Remark 1. We should point out that the encoding schemes of equations (5) and (6) are secret,
i.e. only Alice and Charlie know the encoding scheme (5), and only Bob and Charlie know
equation (6). The reason is as follows. After Charlie performs a Bell measurement on his
qubits 3 and 6, he asks Alice and Bob to declare their Bell measurement results on the qubits
1 and 4, and 2 and 5. This public declaration step is crucial. However, an eavesdropper
who knows that the original initial state is |P +〉123 ⊗ |P +〉456 will do her calculation the
same as Charlie. When she hears that Alice and Bob, respectively, obtained measurement
results �+

14 and �−
25, the eavesdropper looks at equation (7) and can easily deduce that such a

measurement result can be obtained by applying one-qubit unitary operators on the following
four cases: �+

14 ⊗ �−
25 ⊗ �−

36, �−
14 ⊗ �−

25 ⊗ �+
36, �+

14 ⊗ �−
25 ⊗ �−

36 and �−
14 ⊗ �−

25 ⊗ �+
36.

Since Charlie’s measurement result is secret (not publicly declared), the eavesdropper may
pick the correct state only with a probability of 1/4. If the information on the encoding scheme
is not available to the eavesdropper, there is no way for the eavesdropper to find the correct
classical bits. So it is necessary for the two pairs, Alice and Charlie, and Bob and Charlie, to
keep their respective encoding schemes (5) and (6) private. In order to achieve privacy safely,
Alice and Charlie, and Bob and Charlie may use secret keys generated by shared GHZ states
to communicate the encoding method with each other. Since Alice, Bob and Charlie want
to achieve simultaneous mutual communications in secret among different pairs of parties,
one for Alice and Charlie and another for Bob and Charlie, they must be trustworthy and
cooperative. Two communication parties Alice and Charlie (Bob and Charlie) can generate
a secret key used to transmit their encoding scheme via initially shared pairs of GHZ states
with the help of the third party Bob (Alice). The details of generating secret keys are as
follows. Suppose Alice wants to send Charlie her encoding scheme. Each of Alice, Bob
and Charlie performs a Bell measurement on their respective particles 1 and 4, 2 and 5, and
3 and 6, obtaining one of four possible results, �+,�−, �+ and �−. Bob tells Alice and
Charlie of his measurement outcome. Depending on Bob’s information, Alice and Charlie
can infer the measurement result of each other. Alice and Charlie agree that each of the four
Bell states carry two bits of classical message (there are 4! = 24 kinds of encoding methods;
they can choose one kind at random) and regard the information carrying by either Alice’s
measurement results or Bob’s measurement results as secret key bits used to transmit their
encoding scheme. For instance, if the original state is |R−〉123|P +〉456, and the outcome of
Bob’s measurement is �+

25, then according to her measurement result �−
14, Alice can infer that

the outcome of Charlie’s measurement must be �+
36. Similarly, Charlie can deduce Alice’s

measurement result �−
14 from his measurement outcome �+

36. If Alice and Charlie encode
�+

14,�
−
14, �

+
14 and �−

14 as 00, 01, 10 and 11, then they share two classical bits 01. Alice and
Charlie sacrifice some randomly selected bits to test the ‘error rate’. If the error rate is too
high, they abort this QKD protocol. Otherwise, they perform information reconciliation and
privacy amplification [36–42] on the remaining bits to obtain secure final key bits for Alice
informing Charlie of the encoding scheme (5). Using the same method, Bob and Charlie get
a secret key for Bob sending the encoding scheme (6) to Charlie. Thus, in our QSDC scheme,
the eavesdropper cannot get the encoding scheme of the classical bits on the unitary operators.
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That is, if the eavesdropper understands that the operator Alice has applied is σz, she does not
know that this corresponds to the classical bits 11. Therefore, our scheme is a deterministic
QSDC scheme.

Remark 2. The crucial point in the proposed scheme is that the qubits carrying the encoded
message are not transmitted in the public channel. Therefore, a potential eavesdropper cannot
obtain any information.

Remark 3. In order to protect the transmitting information from the eavesdropper, Alice, Bob
and Charlie can make use of classical error correction protocol [38]. That is, Alice and Bob
encode their secret messages and Charlie decode these messages according to a pre-determined
classical error correction protocol.

Note

(A) The above protocol is also a quantum key distribution (QKD) scheme based on GHZ
states and entanglement swapping. If the communication parties want to distribute keys,
Alice and Bob randomly generate their respective classical bit strings a and b, and then
Alice divides her string a into lengths of two bits and encodes by applying the unitary
operators on her qubits and in the same way Bob applies his operator for each classical
bit of b. Alice, Bob and Charlie agree in advance that each of the four Bell states can
carry two bits classical information and encode �+,�−, �+ and �− as 00, 01, 10 and
11, respectively. Protocol then follows as before. By Alice’s measurement result �+

14,

only both Alice and Charlie derive �−
14

σ11−→ �+
14, i.e. Alice and Charlie obtain σ11 and

�−
14 secretly. Since Alice’s operator σ11 is certain and her measurement result �+

14 is
random, Alice and Charlie share two certain bits 11 and two random bits 01 in private.
Similarly, from Bob’s measurement outcome �−

25, Bob and Charlie obtain �−
25

σ1−→ −�−
25

and share one certain bit 1 and two random bits 01 privately. Therefore, in our proposed
protocol, Alice and Bob perform one local operation on their respective particles 1 and
2, and Charlie shares 2 certain bits and 2 random bits with Alice, and 1 certain bit and 2
random bits with Bob secretly.

(B) Bob can also apply unitary operator I = |0〉〈0| + |1〉〈1| and iσy = |0〉〈1| − |1〉〈0|, and
he and Charlie agree beforehand to the encoding: I → 0, iσy → 1, instead of that in the
above protocol.

(C) Particles 1 and 2 play symmetric and equal roles. That is, Alice (Bob) can use one local
operation in equation (4) (equation (3)) and transmit one bit (two bits) of information to
Charlie.

(D) There are 4! = 24 (2! = 2) kinds of encoding method for one assigning two bits to local
operations I, σx , iσy and σz ( one bit to I and σz ). Two communication parties can choose
randomly one kind as their encoding scheme.

3. Security

The security of these schemes is limited by the quality of the quantum channel between
the parties. We base our argument of security on a perfect quantum channel (that is, the
shared GHZ states between the parties are maximally entangled and free of noise). Since the
communication parties are spatially separated, and one cannot distinguish the noise introduced
by the eavesdropper and the noise induced during the preparation and distribution phases, after
generating and distributing such states, the parties may share an ensemble of noisy GHZ states.
In order to share a perfect quantum information channel, they first purify noisy GHZ states and



Deterministic secure direct communication 5767

then test the security of the quantum channel. Suppose that the three communication parties
share an ensemble of N ′ identical mixed multipartite states, they can obtain perfect GHZ states
by using an efficient multipartite entanglement distillation protocol—the multi-party hashing
method [43] and its improvement [44]. After that, the parties verify if they share perfect
maximally entangled GHZ states. They can utilize a similar method as in [32] to do the tests.
In fact, as long as the states taken as the quantum information channel are the eigenvectors of
σx ⊗ σx ⊗ σx , σz ⊗ σz ⊗ I and σz ⊗ I ⊗ σz, then the quantum channel is perfect [44].

The procedure for obtaining perfect GHZ states by using an efficient multipartite
entanglement distillation protocol—multi-party hashing method [43] and its improvement
[44]—is as follows. Suppose three parties Alice, Bob and Charlie share an ensemble of N ′

identical mixed tripartite states ρ and they would like to distill out perfect GHZ states |P +〉.
The GHZ state |P +〉 is the +1 eigenstate of the following set of commuting observables:

S0 = σx ⊗ σx ⊗ σx, S1 = σz ⊗ σz ⊗ I, S2 = σz ⊗ I ⊗ σz. (9)

Denote GHZ states in equation (2) by∣∣GHZp,i1,i2

〉
ABC = 1√

2
(|0〉|i1〉|i2〉 + (−1)p|1〉|i1〉|i2〉), (10)

where p and the i are zero or one and a bar over a bit value indicates its logical negation.
Here, the three labels (p, i1, i2) correspond to the eigenvalues of the three stabilizer generators
S0, S1, S2 by correspondence relations:

eigenvalue 1 −→ label 0,

eigenvalue −1 −→ label 1.

According to [45, 46], Alice, Bob and Charlie can depolarize three-party density matrix ρ by
the following steps. The three perform the operator σx ⊗ σx ⊗ σx with a probability 1/2, and
then apply σz ⊗ σz ⊗ I with a probability 1/2. Finally, they also apply σz ⊗ I ⊗ σz with a
probability 1/2. The overall operation corresponds to

ρ −→ ρABC = 1
8 (ρ + (σx ⊗ σx ⊗ σx)ρ(σx ⊗ σx ⊗ σx) + (σz ⊗ σz ⊗ I )ρ(σz ⊗ σz ⊗ I )

+ (σy ⊗ σy ⊗ σx)ρ(σy ⊗ σy ⊗ σx) + (σz ⊗ I ⊗ σz)ρ(σz ⊗ I ⊗ σz)

+ (σy ⊗ σx ⊗ σy)ρ(σy ⊗ σx ⊗ σy) + (I ⊗ σz ⊗ σz)ρ(I ⊗ σz ⊗ σz)

+ (σx ⊗ σy ⊗ σy)ρ(σx ⊗ σy ⊗ σy)). (11)

The overall operation makes ρ diagonal in the basis (10) by the following form:

ρABC =




p000 0 0 0 0 0 0 0
0 p100 0 0 0 0 0 0
0 0 p011 0 0 0 0 0
0 0 0 p111 0 0 0 0
0 0 0 0 p010 0 0 0
0 0 0 0 0 p110 0 0
0 0 0 0 0 0 p001 0
0 0 0 0 0 0 0 p101




, (12)

without changing the diagonal coefficients. Thus, three parties Alice, Bob and Charlie share a
large ensemble of a density matrix, ρABC, that is GHZ diagonal. They can estimate its matrix
elements reliably by using local operations and classical communications (LOCCs) only.
Measuring along X, Y,Z basis and comparing the results of their local measurements, they can
estimate the diagonal matrix elements in (12) by applying classical random sampling theory.
(This is due to the commuting observable argument in [47].) By definition, any GHZ-basis
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vector in equation (10) is a simultaneous eigenvector of the seven non-trivial stabilizer group
elements σx ⊗ σx ⊗ σx , σz ⊗ σz ⊗ I, σz ⊗ I ⊗ σz,−σy ⊗ σy ⊗ σx , I ⊗ σz ⊗ σz, −σy ⊗ σx ⊗ σy

and −σx ⊗ σy ⊗ σy . If the error rates for all seven of the non-trivial group elements are denoted
by s1, . . . , s7, then

p000 = 1 − 1
4 (s1 + s2 + s3 + s4 + s5 + s6 + s7),

p100 = 1
4 (s1 − s2 − s3 + s4 − s5 + s6 + s7),

p011 = 1
4 (−s1 + s2 + s3 + s4 − s5 + s6 − s7),

p111 = 1
4 (s1 + s2 + s3 − s4 − s5 − s6 + s7),

(13)
p010 = 1

4 (−s1 + s2 − s3 + s4 + s5 − s6 + s7),

p110 = 1
4 (s1 + s2 − s3 − s4 + s5 + s6 − s7),

p001 = 1
4 (−s1 − s2 + s3 − s4 + s5 + s6 + s7),

p101 = 1
4 (s1 − s2 + s3 + s4 + s5 − s6 − s7).

Since s1, . . . , s7 can be determined by local operations and classical communications (LOCCs)
by Alice, Bob and Charlie, the above equations relate the diagonal matrix element of the density
matrix, ρABC, to experimental observables.

Maneva and Smolin [43] constructed an efficient multipartite entanglement distillation
protocol—multi-party hashing method—and showed that its yield (per input mixed state)

Dh = 1 − max
j>0

[{H(bj )}] − H(b0). (14)

Here b0 is formed by concatenating the unknown phase bits of all ρABC while bj are formed
by concatenating the j th amplitude bits, and

H(b0) = −
∑

b0=0,1

( ∑
b1,b2=0,1

pb0b1b2

)
log2

( ∑
b1,b2=0,1

pb0b1b2

)
,

H(b1) = −
∑

b1=0,1


 ∑

b0,b2=0,1

pb0b1b2


 log2


 ∑

b0,b2=0,1

pb0b1b2


 , (15)

H(b2) = −
∑

b2=0,1


 ∑

b0,b1=0,1

pb0b1b2


 log2


 ∑

b0,b1=0,1

pb0b1b2


 .

Therefore, if Dh > 0, using Maneva and Smolin’s multi-party hashing method, Alice, Bob
and Charlie can distill out N ′Dh perfect (generalized) GHZ states |P +〉. Chen and Lo [44]
presented an improved hashing protocol and proved that its yield can be increased to

D′
h = 1 − max{H(b1),H(b2|b1)} − H(b0) + I (b0; b1, b2). (16)

With the improved random hashing method of Chen and Lo, Alice, Bob and Charlie can distill
out N ′D′

h perfect (generalized) GHZ states |P +〉 if D′
h > 0.

The only place eavesdropping can affect the system is the distribution phase of the GHZ
states between the communicating parties. If the eavesdropper couples her ancilla states during
preparation or distribution of the GHZ state, the communicating parties can find her out by
the method of [32], and remove the entanglement between the eavesdropper’s particles and
the GHZ tripartite by the multi-party hashing method [43]. That is, by testing the security
of the quantum channel, the eavesdropper can be detected, and as long as Dh > 0 (D′

h > 0),
the three communication parties can get perfect GHZ states. However, by testing the security
of the quantum channel, if Dh = 0 (D′

h = 0), Alice, Bob and Charlie discard the quantum
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channel and construct it again. In one word, in any case, as long as an eavesdropper exists, we
can find her and ensure the safety of the quantum channel. Once the security of the quantum
channel is assured, which means that Alice, Bob and Charlie share pure GHZ triplets (perfect
quantum channel), no information is leaked to Eve. Hence our proposed protocol is secure,
even if the shared quantum channels are public.

4. Summary

We present a new deterministic secure method for direct communication by GHZ states and
swapping quantum entanglement, where the three spatially separated parties faithfully transmit
secret messages and detect eavesdroppers by the correlations of entanglement swapping results.
In our scheme the secret messages can be encoded directly and are faithfully transmitted from
two senders Alice and Bob to a remote receiver Charlie at the same time via initially shared
GHZ states without revealing any information to a potential eavesdropper. The distributed
entangled particles shared by Alice, Bob and Charlie function as a quantum information
channel for faithful transmission. Using 2N GHZ states, Alice can send 2N bit secret
messages to Charlie; meanwhile, Bob can also transmit N bits of information to Charlie. Since
there is no transmission of the qubit carrying the secret message between Alice and Bob, and
Charlie in the public channel, it is completely secure for direct secret communication if a
perfect quantum channel is used. That is, simultaneous many mutual QSDC schemes of the
central party and the other two parties can be realized.
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